Wednesday, December 30, 2015

Australian Quantum Research in Global "Top 10 Breakthroughs of 2015"

UNSW quantum research in global ‘Top 10 Breakthroughs of 2015'


14 DEC 2015

UNSW, Sydney
Physics World, the magazine of the UK’s Institute of Physics, has named an advance in quantum computing by engineers at UNSW among its global “Top Ten Breakthroughs of 2015”.

Physics World, the magazine of the UK’s Institute of Physics, has named an advance by engineers at UNSW Australia among its global “Top Ten Breakthroughs of 2015”.

[caption id="attachment_717" align="aligncenter" width="563"]Australian Quantum Research in Global "Top 10 Breakthroughs of 2015" www.quantumcomputingtechnologyaustralia.com-114    Australian Quantum Research in Global "Top 10 Breakthroughs of 2015"[/caption]

The research, in which a team of Australian engineers built a quantum logic gate in silicon for the first time, potentially clears the final hurdle to making silicon quantum computers a reality. Led by Andrew Dzurak, a Scientia Professor at the School of Electrical Engineering and Telecommunications at UNSW, it appeared in October this year in the international journal Nature.

The Top Ten is chosen by a panel of editors and reporters of Physics World, one of the world's leading physics magazines. Research must be “fundamentally important, a significant advance in knowledge and show a strong connection between theory and experiment”, the magazine said.



It is a recognition that building a quantum logic gate in silicon is a crucial advance for quantum computing – one of the many our centre at UNSW has made recently.




Dzurak, who is also Director of the NSW node of the Australian National Fabrication Facilitywhich makes nanofabrication of precision components for quantum research possible, welcomed the recognition for his team which forms part of the UNSW-based Australian Research Council Centre for Quantum Computation and Communication Technology (CQC2T).

“It is a recognition that building a quantum logic gate in silicon is a crucial advance for quantum computing – one of the many our centre at UNSW has made recently,” said Dzurak. “This has been recognised by the Australian government and our industry partners, who this week committed another $46 million in additional funding for our quest to make quantum computers a reality.”

On Tuesday, Telstra announced an in-principle commitment of $10 million plus in-kind support over the next five years to CQC2T – the same day that the Commonwealth Bank of Australia also pledgedanother $10 million, on top of its $5 million investment in December 2014.

Scientia Professor Michelle Simmons, who heads CQC2T with 180 researchers, said the investments sent a “very powerful message about supporting internationally leading Australian research in areas of breakthrough technology.

“It has been an amazing week for the silicon quantum computing teams at UNSW and the University of Melbourne,” Simmons said. “We are thrilled that leading Australian companies such as the Commonwealth Bank and Telstra are getting behind our world-leading research. It is clear recognition of the fantastic work at our centre over the past decade, and we hope this investment will form the basis of new industries here in Australia.”

Dr Menno Veldhorst, a UNSW Research Fellow and the lead author of the Nature paper, was equally delighted. “We’ve shown that a two-qubit logic gate – the central building block of a quantum computer – can be made in silicon, which we thought was a big deal. It’s nice to see that this has been recognised by our peers, and attracted industry attention.

“Because we use largely the same device technology as existing computer chips, we believe what we have made will be much easier to make into a full-scale processor chip than for any of the leading designs, which mostly rely on exotic elements and technologies. This makes building a quantum computer much more feasible, since it is based on the same manufacturing technology as today’s computer industry,” he added.

Dzurak noted that the team had recently “patented a design for a full-scale quantum computer chip that would allow for millions of our qubits, all doing the types of calculations that we’ve just experimentally demonstrated”.

The advance represents the final physical component needed to realise the promise of super-powerful silicon quantum computers, which harness the science of the very small – the strange behaviour of subatomic particles – to solve computing challenges that are beyond the reach of even today’s fastest supercomputers.

In classical computers, data is rendered as binary bits, which are always in one of two states: 0 or 1. However, a quantum bit (or ‘qubit’) can exist in both of these states at once, a condition known as a superposition. A qubit operation exploits this quantum weirdness by allowing many computations to be performed in parallel (a two-qubit system performs the operation on 4 values, a three-qubit system on 8, and so on).

“If quantum computers are to become a reality, the ability to conduct one- and two-qubit calculations are essential,” said Dzurak, who jointly led the team that in 2012 who demonstrated the first ever silicon qubit, also reported in Nature.

Until now, it had not been possible to make two quantum bits ‘talk’ to each other – and thereby create a logic gate – using silicon. “The silicon chip in your smartphone or tablet already has around one billion transistors on it, with each transistor less than 100 billionths of a metre in size,” said Veldhorst.

“We’ve morphed those silicon transistors into quantum bits by ensuring that each has only one electron associated with it. We then store the binary code of 0 or 1 on the ‘spin’ of the electron, which is associated with the electron’s tiny magnetic field,” he added.

Building a full-scale quantum processor would have major applications in the finance, security and healthcare sectors, allowing the identification and development of new medicines by greatly accelerating the computer-aided design of pharmaceutical compounds (and minimising lengthy trial and error testing); the development of new, lighter and stronger materials spanning consumer electronics to aircraft; and faster searching of massive databases.

Other researchers involved in the ‘top 10’ Nature paper include Professor Kohei M. Itoh of Japan’s Keio University – who provided specialised silicon wafers for the project – along with UNSW’s School of Electrical Engineering and Telecommunications Dr Henry Yang and Professor Andrea Morello, who leads the quantum spin control research team at CQC2T.

In November, Morello’s team proved – with the highest score ever obtained – that a quantum version of computer code can be written, and manipulated, using two quantum bits in a silicon microchip. This removes lingering doubts that such operations can be made reliably enough to allow powerful quantum computers to become a reality.

Only a month earlier, a team led by Simmons and CQC2T’s deputy director, Professor Lloyd Hollenbergof the University of Melbourne designed a 3D silicon chip architecture based on single atom quantum bits, compatible with atomic-scale fabrication techniques – providing a blueprint to build a large-scale quantum computer.

The full Physics World list of Top Ten Breakthroughs of 2015 can be found here.

News Release Source : UNSW quantum research in global ‘Top 10 Breakthroughs of 2015'

Image Credit : UNSW

UNSW to Receive AU$10m from Telstra for Quantum Computing

Telstra matches $10m CBA pledge for quantum computing race


08 DEC 2015

UNSW, Sydney
UNSW’s flagship quantum computing project has received a second major injection of funds from Australia’s corporate sector, with Telstra matching a Commonwealth Bank pledge of $10 million.






UNSW’s flagship quantum computing project has received a second major injection of funds from Australia’s corporate sector, with Telstra matching a Commonwealth Bank pledge of $10 million.

[caption id="attachment_713" align="aligncenter" width="563"]UNSW to Receive AU$10m from Telstra for Quantum Computing www.quantumcomputingtechnologyaustralia.com-113         UNSW to Receive AU$10m from Telstra for Quantum Computing[/caption]

Telstra announced an in-principle commitment of $10 million plus in-kind support over the next five years to the UNSW-based Australian Research Council Centre for Quantum Computation and Communication Technology, led by Scientia Professor Michelle Simmons.

It follows a similar $10 million pledge from the Commonwealth Bank earlier today after the federal government promised $26 million to the Centre as part of its $1.1 billion National Innovation and Science Agenda unveiled this week.



Telstra is ready and willing to play a role in building for the future. We must come together to plan for future generations through technological advancements. This partnership is a solid demonstration of this commitment.




Telstra chief executive officer Andrew Penn said the company was thrilled to be involved in such a dynamic, world-leading project.

“The potential of quantum computing is significant for countries across the globe, and we are excited to be part of this important initiative to build the world’s first silicon-based quantum computer in Sydney,” said Mr Penn.

“Telstra is ready and willing to play a role in building for the future. We must come together to plan for future generations through technological advancements. This partnership is a solid demonstration of this commitment.”

Professor Simmons, who leads the centre with more that 180 researchers, said the investment sent a “very powerful message about supporting internationally leading Australia research in areas of breakthrough technology”.

“It has been an amazing week for the silicon quantum computing teams at UNSW and the University of Melbourne. We are thrilled that Australian technology leaders Telstra are getting behind our world-leading research. It is recognition of the fantastic work that many researchers across these nodes have achieved over the past decade and we hope this investment will form the basis of new industries here in Australia,” Professor Simmons said.




Lloyd Hollenberg and Charles Hill


Melbourne University's Dr Charles Hill and Professor Lloyd Hollenberg, the Centre's Deputy Director





UNSW President and Vice-Chancellor Ian Jacobs thanked the government, Telstra and the CBA, hailing the collaboration as a powerful example of “what can happen when a culture of innovation is fostered from the top”.

“What a week for innovation, industry collaboration and UNSW’s world-leading quantum computing researchers,” said Professor Jacobs.

“The University applauds the vision and commitment of two of Australia's iconic corporates, the Commonwealth Bank and Telstra, in recognising the global significance and promise that quantum computing holds for the future.”

Quantum computing in silicon is an entirely new system at the atomic scale and Australia leads the world in single-atom engineering. In the long term, a single quantum computer has the potential to exceed the combined power of all the computers currently on Earth for certain high-value applications including data processing and drug development.



We are already at the forefront here, and now is the time to back our success, invest the money and see some results.




Industry, Innovation and Science Minister Christopher Pyne told the National Press Club that Australian researchers were currently winning the global quantum computing race and the government intended to cement their position.

“We are already at the forefront here, and now is the time to back our success, invest the money and see some results,” said Mr Pyne.

Telstra’s chief said quantum computing represented an “important leap in innovation” and would open a world of new possibilities.

“We want to help those possibilities become a reality,” Mr Penn said.

“Through this investment, and in partnership with other corporate partners such as the Commonwealth Bank of Australia, we can work together to put Australia at the forefront of global innovation.”

As well as financial support Mr Penn said Telstra would offer the resources of its data science team, including the skills and knowledge of Telstra’s chief scientist Dr Hugh Bradlow.







               Image Credit : UNSW

Commonwealth Bank Invests $10m to Quantum Computing Flagship

Commonwealth Bank commits $10m to quantum computing flagship


08 DEC 2015

UNSW Sydney
CBA’s $10 million pledge to support UNSW's quantum computing research sends a powerful message about industry collaboration on world-leading Australian innovation, and builds on major government investment announced this week.

UNSW welcomes the Commonwealth Bank’s $10 million pledge to support the University’s bid to build the world’s first silicon-based quantum computer, following a major government investment in the project this week.

[caption id="attachment_708" align="aligncenter" width="563"]Commonwealth Bank Invests $10m to Quantum Computing Flagship www.quantumcomputingtechnologyaustralia.com-112          Commonwealth Bank Invests $10m to Quantum Computing Flagship[/caption]

The UNSW-based Australian Research Council Centre for Quantum Computation and Communication Technology received a $26 million boost as part of the federal government’s $1.1 billion National Innovation and Science Agenda unveiled on Monday.


World-leading innovation can happen – and is happening – in Australia.



Led by UNSW Scientia Professor Michelle Simmons, the Centre is leading the global race to build the world’s first quantum computer, a technology the government said would “transform Australian and global business”.

Following the innovation funding announcement, CBA chief executive Ian Narev on Tuesday said the bank intended to invest an additional $10 million over five years, building on an initial $5 millioncommitted in December 2014.

Mr Narev said Professor Simmons’ trailblazing work was proof that “world-leading innovation can happen – and is happening – in Australia”.

“For innovation to thrive there must be collaboration between governments, research institutions, businesses and entrepreneurs,” he said.

“Our investment has a long-term focus and is an example of potential collaboration and commercialisation.”

Professor Simmons was delighted by the announcement, which she said underscored the Commonwealth Bank’s position as a visionary technology leader.

“This investment sends a very powerful message about supporting internationally leading Australian research in areas of breakthrough technology,” she said.

“We are very much looking forward to extending our positive interactions with the bank to secure this technology for Australia’s future.”

UNSW President and Vice-Chancellor Professor Ian Jacobs thanked the Bank for its funding commitment to the Centre’s ground-breaking and globally significant work.

“By working effectively with industry, government and leaders across the entire innovation ecosystem, universities can have a profound impact,” said Professor Jacobs.



We are very much looking forward to extending our positive interactions with the bank to secure this technology for Australia’s future.




Quantum computing in silicon is an entirely new system at the atomic scale and Australia leads the world in single-atom engineering. In the long term, a single quantum computer has the potential to exceed the combined power of all the computers currently on Earth for certain high-value applications including data processing and drug development.

David Whiteing, chief information officer at CBA, said quantum computing would increase the speed and power of computers “beyond what we can currently imagine”.

“This is still some time in the future, but the time for investment is now,” he said.

News Release Source : Commonwealth Bank commits $10m to quantum computing flagship

Image Credit : UNSW

Saturday, December 19, 2015

Scientists Demonstrates 'Hybrid' Logic Gate as Work Towards Quantum Computer Continues

Oxford team demonstrates 'hybrid' logic gate as work towards quantum computer continues


Just over a year ago, the UK government announced an investment of £270m over five years to help get quantum technology out of laboratories and into the marketplace.

[caption id="attachment_703" align="aligncenter" width="468"]Scientists Demonstrates 'Hybrid' Logic Gate as Work Towards Quantum Computer Continues www.quantumcomputingtechnologyaustralia.com-111 Scientists Demonstrates 'Hybrid' Logic Gate as Work Towards                           Quantum Computer Continues[/caption]

Oxford was chosen to lead one of four EPSRC-funded 'Hubs' looking at different aspects of quantum technology - in Oxford's case, shaping the future of quantum networking and computing, towards the ultimate goal of developing a functioning quantum computer.

Since then, the Networked Quantum Information Technologies (NQIT - pronounced 'N-kit') Hub, based at Oxford but involving nearly 30 academic and industrial partners, has been focusing on developing quantum technologies that could dwarf the processing power of today's supercomputers.

A new paper by Oxford researchers, published in the journal Nature, demonstrates how the work of the Hub is progressing.

Professor David Lucas of Oxford's Department of Physics, co-leader, with Professor Andrew Steane, of the ion trap quantum computing group, explains: 'The development of a "quantum computer" is one of the outstanding technological challenges of the 21st century. A quantum computer is a machine that processes information according to the rules of quantum physics, which govern the behaviour of microscopic particles at the scale of atoms and smaller.

'An important point is that it is not merely a different technology for computing in the same way our everyday computers work; it is at a very fundamental level a different way of processing information. It turns out that this quantum-mechanical way of manipulating information gives quantum computers the ability to solve certain problems far more efficiently than any conceivable conventional computer. One such problem is related to breaking secure codes, while another is searching large data sets. Quantum computers are naturally well-suited to simulating other quantum systems, which may help, for example, our understanding of complex molecules relevant to chemistry and biology.'

One of the leading technologies for building a quantum computer is trapped atomic ions, and a principal goal of the NQIT project is to develop the constituent elements of a quantum computer based on these ions.

Professor Lucas says: 'Each trapped ion (a single atom, with one electron removed) is used to represent one "quantum bit" of information. The quantum states of the ions are controlled with laser pulses of precise frequency and duration. Two different species of ion are needed in the computer: one to store information (a "memory qubit") and one to link different parts of the computer together via photons (an "interface qubit").'

The Nature paper, whose lead author is Magdalen College Junior Research Fellow Chris Ballance, demonstrates the all-important quantum 'logic gate' between two different species of ion - in this case two isotopes of calcium, the abundant isotope calcium-40 and the rare isotope calcium-43.

Professor Lucas says: 'The Oxford team has previously shown that calcium-43 makes the best single-qubit memory ever demonstrated, across all physical systems, while the calcium-40 ion has a simpler structure which is well-suited for use as an "interface qubit". The logic gate, which was first demonstrated for same-species ions at NIST Boulder (USA) in 2003, allows quantum information to be transferred from one qubit to another; in the present work, the qubits reside in the two different isotopes, stored in the same ion trap. The Oxford work was the first to demonstrate that this type of logic gate is possible with the demanding precision necessary to build a quantum computer.

'In a nice piece of "spin-off science" from this technological achievement, we were able to perform a "Bell test", by first using the high-precision logic gate to generate an entangled state of the two different-species ions, then manipulating and measuring them independently. This is a test which probes the non-local nature of quantum mechanics; that is, the fact that an entangled state of two separated particles has properties that cannot be mimicked by a classical system. This was the first time such a test had been performed on two different species of atom separated by many times the atomic size.'

While Professor Lucas cautions that the so-called 'locality loophole' is still present in this experiment, there is no doubt the work is an important contribution to the growing body of research exploring the physics of entanglement. He says: 'The significance of the work for trapped-ion quantum computing is that we show that quantum logic gates between different isotopic species are possible, can be driven by a relatively simple laser system, and can work with precision beyond the so-called "fault-tolerant threshold" precision of approximately 99% - the precision necessary to implement the techniques of quantum error correction, without which a quantum computer of useful size cannot be built.'

In the long term, it is likely that different atomic elements will be required, rather than different isotopes. In closely related work published in the same issue of Nature, by Ting Rei Tan et al, the NIST Ion Storage group has demonstrated a different type of quantum logic gate using ions of two different elements (beryllium and magnesium).

News Source Release : Oxford team demonstrates 'hybrid' logic gate as work towards quantum computer continues

Image Credit : UNIVERSITY OF OXFORD

More Information Link : www2.physics.ox.ac.uk/research/ion-trap-quantum-computing-group

Tuesday, December 1, 2015

Quantum Entanglement Achieved at Room Temperature

Strange quantum phenomenon achieved at room temperature in semiconductor wafers




























Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics: It says that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other—no matter how far apart they are.

[caption id="attachment_699" align="aligncenter" width="650"]Quantum Entanglement Achieved at Room Temperature www.quantumcomputingtechnologyaustralia.com-110                                          Quantum Entanglement Achieved at Room Temperature[/caption]

A century ago, entanglement was at the center of intense theoretical debate, leaving scientists like Albert Einstein baffled. Today, entanglement is accepted as a fact of nature and is actively being explored as a resource for future technologies including quantum computers, quantum communication networks and high-precision quantum sensors.

Entanglement is also one of nature’s most elusive phenomena. Producing entanglement between particles requires that they start out in a highly ordered state, which is disfavored by thermodynamics, the process that governs the interactions between heat and other forms of energy. This poses a particularly formidable challenge when trying to realize entanglement at the macroscopic scale, among huge numbers of particles.

“The macroscopic world that we are used to seems very tidy, but it is completely disordered at the atomic scale. The laws of thermodynamics generally prevent us from observing quantum phenomena in macroscopic objects,” said Paul Klimov, a graduate student in the Institute for Molecular Engineering and lead author of new research on quantum entanglement. The institute is a partnership between UChicago and Argonne National Laboratory.

Previously, scientists have overcome the thermodynamic barrier and achieved macroscopic entanglement in solids and liquids by going to ultra-low temperatures (-270 degrees Celsius) and applying huge magnetic fields (1,000 times larger than that of a typical refrigerator magnet) or using chemical reactions. In the Nov. 20 issue of Science Advances, Klimov and other researchers in Prof. David Awschalom’s group at the Institute for Molecular Engineering have demonstrated that macroscopic entanglement can be generated at room temperature and in a small magnetic field.

The researchers used infrared laser light to order (preferentially align) the magnetic states of thousands of electrons and nuclei and then electromagnetic pulses, similar to those used for conventional magnetic resonance imaging (MRI), to entangle them. This procedure caused pairs of electrons and nuclei in a macroscopic 40 micrometer-cubed volume (the volume of a red blood cell) of the semiconductor SiC to become entangled.

“We know that the spin states of atomic nuclei associated with semiconductor defects have excellent quantum properties at room temperature,” said Awschalom, the Liew Family Professor in Molecular Engineering and a senior scientist at Argonne. “They are coherent, long-lived and controllable with photonics and electronics. Given these quantum ‘pieces,’ creating entangled quantum states seemed like an attainable goal.”

In addition to being of fundamental physical interest, “the ability to produce robust entangled states in an electronic-grade semiconductor at ambient conditions has important implications on future quantum devices,” Awschalom said.

In the short term, the techniques used here in combination with sophisticated devices enabled by advanced SiC device-fabrication protocols could enable quantum sensors that use entanglement as a resource for beating the sensitivity limit of traditional (non-quantum) sensors. Given that the entanglement works at ambient conditions and that SiC is bio-friendly, biological sensing inside a living organism is one particularly exciting application.

“We are excited about entanglement-enhanced magnetic resonance imaging probes, which could have important biomedical applications,” said Abram Falk of IBM’s Thomas J. Watson Research Center and a co-author of the research findings.

In the long term, it might even be possible to go from entangled states on the same SiC chip to entangled states across distant SiC chips. Such efforts could be facilitated by physical phenomena that allow macroscopic quantum states, as opposed to single quantum states (in single atoms), to interact very strongly with one another, which is important for producing entanglement with a high success rate. Such long-distance entangled states have been proposed for synchronizing global positioning satellites and for communicating information in a manner that is fundamentally secured from eavesdroppers by the laws of physics.

News Source Release : Strange quantum phenomenon achieved at room temperature in semiconductor wafers

Image Credit : The University of Chicago

Monday, November 16, 2015

Australian Engineers Make Another Quantum Computing Breakthrough

Quantum computer coding in silicon now possible


Strongest possible proof obtained that using entanglement to write executable software code for quantum computers is indeed possible

UNIVERSITY OF NEW SOUTH WALES

17-NOV-2015

A team of Australian engineers has proven -- with the highest score ever obtained -- that a quantum version of computer code can be written, and manipulated, using two quantum bits in a silicon microchip. The advance removes lingering doubts that such operations can be made reliably enough to allow powerful quantum computers to become a reality.



[caption id="attachment_695" align="alignnone" width="650"]Australian Engineers Make Another Quantum Computing Breakthrough www.quantumcomputingtechnologyaustralia.com-109 Project leader Andrea Morello (left) with lead authors Stephanie Simmons (middle) and                             Juan Pablo Dehollain (right) in the UNSW laboratory where the experiments were performed.[/caption]

The result, obtained by a team at UNSW, appears today in the international journal, Nature Nanotechnology.

The quantum code written at UNSW is built upon a class of phenomena called quantum entanglement, which allows for seemingly counterintuitive phenomena such as the measurement of one particle instantly affecting another – even if they are at opposite ends of the universe.

“This effect is famous for puzzling some of the deepest thinkers in the field, including Albert Einstein, who called it ‘spooky action at a distance’,” said Professor Andrea Morello, of the School of Electrical Engineering & Telecommunications at UNSW and Program Manager in the Centre for Quantum Computation & Communication Technology, who led the research. “Einstein was sceptical about entanglement, because it appears to contradict the principles of ‘locality’, which means that objects cannot be instantly influenced from a distance.”

Physicists have since struggled to establish a clear boundary between our everyday world -- which is governed by classical physics -- and this strangeness of the quantum world. For the past 50 years, the best guide to that boundary has been a theorem called Bell's Inequality, which states that no local description of the world can reproduce all of the predictions of quantum mechanics.

Bell's Inequality demands a very stringent test to verify if two particles are actually entangled, known as the 'Bell test', named for the British physicist who devised the theorem in 1964.

"The key aspect of the Bell test is that it is extremely unforgiving: any imperfection in the preparation, manipulation and read-out protocol will cause the particles to fail the test," said Dr Juan Pablo Dehollain, a UNSW Research Associate who with Dr Stephanie Simmons was a lead author of the Nature Nanotechnology paper.

"Nevertheless, we have succeeded in passing the test, and we have done so with the highest 'score' ever recorded in an experiment," he added.

In the UNSW experiment, the two quantum particles involved are an electron and the nucleus of a single phosphorus atom, placed inside a silicon microchip. These particles are, literally, on top of each other -- the electron orbits around the nucleus. Therefore, there is no complication arising from the spookiness of action at a distance.

However, the significance of the UNSW experiment is that creating these two-particle entangled states is tantamount to writing a type of computer code that does not exist in everyday computers. It therefore demonstrates the ability to write a purely quantum version of computer code, using two quantum bits in a silicon microchip -- a key plank in the quest super-powerful quantum computers of the future.

"Passing the Bell test with such a high score is the strongest possible proof that we have the operation of a quantum computer entirely under control," said Morello. "In particular, we can access the purely-quantum type of code that requires the use of the delicate quantum entanglement between two particles."

In a normal computer, using two bits one, could write four possible code words: 00, 01, 10 and 11. In a quantum computer, instead, one can also write and use 'superpositions' of the classical code words, such as (01 + 10), or (00 + 11). This requires the creation of quantum entanglement between two particles.

"These codes are perfectly legitimate in a quantum computer, but don't exist in a classical one," said UNSW Research Fellow Stephanie Simmons, the paper's co-author. "This is, in some sense, the reason why quantum computers can be so much more powerful: with the same number of bits, they allow us to write a computer code that contains many more words, and we can use those extra words to run a different algorithm that reaches the result in a smaller number of steps."

Morello highlighted the importance of achieving the breakthrough using a silicon chip: "What I find mesmerising about this experiment is that this seemingly innocuous 'quantum computer code' - (01 + 10) and (00 + 11) - has puzzled, confused and infuriated generations of physicists over the past 80 years.

"Now, we have shown beyond any doubt that we can write this code inside a device that resembles the silicon microchips you have on your laptop or your mobile phone. It's a real triumph of electrical engineering," he added.

###


In addition to the team lead by Morello, the work was supported by Professor Andrew Dzurak and his team at UNSW, as well as collaborators from the University of Melbourne and Japan's Keio University.

News Release Source : Quantum computer coding in silicon now possible

Image Credit : UNSW

Friday, October 30, 2015

Australian Researchers Design a Full-Scale Architecture for a Quantum Computer in Silicon

Australian scientists design a full-scale architecture for a quantum computer in silicon


Researchers at UNSW and the University of Melbourne have designed a 3D silicon chip architecture based on single atom quantum bits, providing a blueprint to build a large-scale quantum computer.

UNIVERSITY OF NEW SOUTH WALES

Sydney, Australia - Australian scientists have designed a 3D silicon chip architecture based on single atom quantum bits, which is compatible with atomic-scale fabrication techniques - providing a blueprint to build a large-scale quantum computer.

[caption id="attachment_687" align="aligncenter" width="695"]Australian Researchers design a full-scale architecture for a quantum computer in silicon www.quantumcomputingtechnologyaustralia.com-108 This picture shows from left to right Dr Matthew House, Sam Hile (seated), Scientia Professor Sven Rogge and Scientia Professor Michelle Simmons of the ARC Centre of Excellence for Quantum Computation and Communication Technology at UNSW.[/caption]

Scientists and engineers from the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), headquartered at the University of New South Wales (UNSW), are leading the world in the race to develop a scalable quantum computer in silicon - a material well-understood and favoured by the trillion-dollar computing and microelectronics industry.

Teams led by UNSW researchers have already demonstrated a unique fabrication strategy for realising atomic-scale devices and have developed the world's most efficient quantum bits in silicon using either the electron or nuclear spins of single phosphorus atoms. Quantum bits - or qubits - are the fundamental data components of quantum computers.

One of the final hurdles to scaling up to an operational quantum computer is the architecture. Here it is necessary to figure out how to precisely control multiple qubits in parallel, across an array of many thousands of qubits, and constantly correct for 'quantum' errors in calculations.

Now, the CQC2T collaboration, involving theoretical and experimental researchers from the University of Melbourne and UNSW, has designed such a device. In a study published today inScience Advances, the CQC2T team describes a new silicon architecture, which uses atomic-scale qubits aligned to control lines - which are essentially very narrow wires - inside a 3D design.

"We have demonstrated we can build devices in silicon at the atomic-scale and have been working towards a full-scale architecture where we can perform error correction protocols - providing a practical system that can be scaled up to larger numbers of qubits," says UNSW Scientia Professor Michelle Simmons, study co-author and Director of the CQC2T.

"The great thing about this work, and architecture, is that it gives us an endpoint. We now know exactly what we need to do in the international race to get there."

In the team's conceptual design, they have moved from a one-dimensional array of qubits, positioned along a single line, to a two-dimensional array, positioned on a plane that is far more tolerant to errors. This qubit layer is "sandwiched" in a three-dimensional architecture, between two layers of wires arranged in a grid.


About the video - Australian researchers have figured out a way to deal with errors in quantum computers, giving them the essential architecture that may help this team become the first to build a functioning quantum computer in silicon.

By applying voltages to a sub-set of these wires, multiple qubits can be controlled in parallel, performing a series of operations using far fewer controls. Importantly, with their design, they can perform the 2D surface code error correction protocols in which any computational errors that creep into the calculation can be corrected faster than they occur.

"Our Australian team has developed the world's best qubits in silicon," says University of Melbourne Professor Lloyd Hollenberg, Deputy Director of the CQC2T who led the work with colleague Dr Charles Hill. "However, to scale up to a full operational quantum computer we need more than just many of these qubits - we need to be able to control and arrange them in such a way that we can correct errors quantum mechanically."

"In our work, we've developed a blueprint that is unique to our system of qubits in silicon, for building a full-scale quantum computer."

In their paper, the team proposes a strategy to build the device, which leverages the CQC2T's internationally unique capability of atomic-scale device fabrication. They have also modelled the required voltages applied to the grid wires, needed to address individual qubits, and make the processor work.

"This architecture gives us the dense packing and parallel operation essential for scaling up the size of the quantum processor," says Scientia Professor Sven Rogge, Head of the UNSW School of Physics. "Ultimately, the structure is scalable to millions of qubits, required for a full-scale quantum processor."

News Release Source :  Australian scientists design a full-scale architecture for a quantum computer in silicon

Image Credit : UNSW Australia

Tuesday, October 6, 2015

Australian Engineers Build World First Two-Qubit Logic Gate in Silicon

Crucial hurdle overcome in quantum computing


UNSW, 06 OCT 2015

A team of Australian engineers has built a quantum logic gate in silicon for the first time, making calculations between two qubits of information possible – and thereby clearing the final hurdle to making silicon quantum computers a reality.

A team of Australian engineers has built a quantum logic gate in silicon for the first time, making calculations between two qubits of information possible – and thereby clearing the final hurdle to making silicon quantum computers a reality.

[caption id="attachment_677" align="aligncenter" width="563"]Australian Engineers Build World First Two-Qubit Logic Gate in Silicon www.quantumcomputingtechnologyaustralia.com-107 Lead author Menno Veldhorst (left) and project leader Andrew Dzurak (right) in the UNSW laboratory where the experiments were performed.[/caption]

The significant advance, by a team at the University of New South Wales (UNSW) in Sydney appears today in the international journal Nature.

“What we have is a game changer,” said team leader Andrew Dzurak, Scientia Professor and Director of the Australian National Fabrication Facility at UNSW.

“We’ve demonstrated a two-qubit logic gate – the central building block of a quantum computer – and, significantly, done it in silicon. Because we use essentially the same device technology as existing computer chips, we believe it will be much easier to manufacture a full-scale processor chip than for any of the leading designs, which rely on more exotic technologies.

“This makes the building of a quantum computer much more feasible, since it is based on the same manufacturing technology as today’s computer industry,” he added.

The advance represents the final physical component needed to realise the promise of super-powerful silicon quantum computers, which harness the science of the very small – the strange behaviour of subatomic particles – to solve computing challenges that are beyond the reach of even today’s fastest supercomputers.

In classical computers, data is rendered as binary bits, which are always in one of two states: 0 or 1. However, a quantum bit (or ‘qubit’) can exist in both of these states at once, a condition known as a superposition. A qubit operation exploits this quantum weirdness by allowing many computations to be performed in parallel (a two-qubit system performs the operation on 4 values, a three-qubit system on 8, and so on).

“If quantum computers are to become a reality, the ability to conduct one- and two-qubit calculations are essential,” said Dzurak, who jointly led the team in 2012 that demonstrated the first ever silicon qubit, also reported in Nature.

Until now, it had not been possible to make two quantum bits ‘talk’ to each other – and thereby create a logic gate – using silicon. But the UNSW team – working with Professor Kohei M. Itoh of Japan’s Keio University – has done just that for the first time.

The result means that all of the physical building blocks for a silicon-based quantum computer have now been successfully constructed, allowing engineers to finally begin the task of designing and building a functioning quantum computer.

"Despite this enormous global interest and investment, quantum computing has – like Schrödinger’s cat – been simultaneously possible (in theory) but seemingly impossible (in physical reality),” saidProfessor Mark Hoffman, UNSW's Dean of Engineering.

“The advance our UNSW team has made could, we believe, be the inflection point that changes that Schrödinger’s paradigm," he added. "The technology – devised, tested and patented by our team – has the potential to take quantum computing across the threshold from the theoretical to the real.”

A key advantage of the UNSW approach is that it reconfigured the ‘transistors’ used to define the bits in existing silicon chips, and turned them into qubits. “The silicon chip in your smartphone or tablet already has around one billion transistors on it, with each transistor less than 100 billionths of a metre in size,” said Dr Menno Veldhorst, a UNSW Research Fellow and the lead author of the Nature paper.

“We’ve morphed those silicon transistors into quantum bits by ensuring that each has only one electron associated with it. We then store the binary code of 0 or 1 on the ‘spin’ of the electron, which is associated with the electron’s tiny magnetic field,” he added.

Dzurak noted that the team had recently “patented a design for a full-scale quantum computer chip that would allow for millions of our qubits, all doing the types of calculations that we’ve just experimentally demonstrated".

He said that a key next step for the project is to identify the right industry partners to work with to manufacture the full-scale quantum processor chip.

Such a full-scale quantum processor would have major applications in the finance, security and healthcare sectors, allowing the identification and development of new medicines by greatly accelerating the computer-aided design of pharmaceutical compounds (and minimising lengthy trial and error testing); the development of new, lighter and stronger materials spanning consumer electronics to aircraft; and faster information searching through large databases.

Other researchers from UNSW’s School of Electrical Engineering and Telecommunications who contributed to the work include Dr Henry Yang and Associate Professor Andrea Morello, who leads the quantum spin control research team. Professor Kohei M. Itoh from Keio University in Japan provided specialised silicon wafers for the project.

Dzurak’s research is supported by the Australian Research Council via the Centre of Excellence for Quantum Computation and Communication Technology, the U.S. Army Research Office, the State Government of New South Wales in Australia, the Commonwealth Bank of Australia, and the University of New South Wales. Veldhorst acknowledges support from the Netherlands Organisation for Scientific Research. The quantum logic devices were constructed at the Australian National Fabrication Facility, which is supported by the federal government’s National Collaborative Research Infrastructure Strategy (NCRIS).

News Release Source : Crucial hurdle overcome in quantum computing

Image Credit : University of New South Wales (UNSW)

Saturday, September 26, 2015

NIST Researchers Breaks Distance Record for Quantum Teleportation

NIST Team Breaks Distance Record for Quantum Teleportation


NIST

BOULDER, Colo., September 22, 2015

Researchers at the National Institute of Standards and Technology (NIST) have “teleported” or transferred quantum information carried in light particles over 100 kilometers (km) of optical fiber, four times farther than the previous record.

[caption id="attachment_672" align="aligncenter" width="314"]NIST Researchers Breaks Distance Record for Quantum Teleportation www.quantumcomputingtechnologyaustralia.com-106 NIST Researchers Breaks Distance Record for Quantum Teleportation[/caption]

The experiment confirmed that quantum communication is feasible over long distances in fiber. Other research groups have teleported quantum information over longer distances in free space, but the ability to do so over conventional fiber-optic lines offers more flexibility for network design.


Not to be confused with Star Trek’s fictional “beaming up” of people, quantum teleportation involves the transfer, or remote reconstruction, of information encoded in quantum states of matter or light. Teleportation is useful in both quantum communications and quantum computing, which offer prospects for novel capabilities such as unbreakable encryption and advanced code-breaking, respectively. The basic method for quantum teleportation was first proposed more than 20 years ago and has been performed by a number of research groups, including one at NIST using atoms in 2004.


The new record, described in Optica,* involved the transfer of quantum information contained in one photon—its specific time slot in a sequence—to another photon transmitted over 102 km of spooled fiber in a NIST laboratory in Colorado.


The lead author, Hiroki Takesue, was a NIST guest researcher from NTT Corp. in Japan. The achievement was made possible by advanced single-photon detectors designed and made at NIST.


“Only about 1 percent of photons make it all the way through 100 km of fiber,” NIST’s Marty Stevens says. “We never could have done this experiment without these new detectors, which can measure this incredibly weak signal.”


Until now, so much quantum data was lost in fiber that transmission rates and distances were low. The new NTT/NIST teleportation technique could be used to make devices called quantum repeaters that could resend data periodically in order to extend network reach, perhaps enough to eventually build a “quantum internet.” Previously, researchers thought quantum repeaters might need to rely on atoms or other matter, instead of light, a difficult engineering challenge that would also slow down transmission.


Various quantum states can be used to carry information; the NTT/NIST experiment used quantum states that indicate when in a sequence of time slots a single photon arrives. The teleportation method is novel in that four of NIST’s photon detectors were positioned to filter out specific quantum states. (See graphic for an overview of how the teleportation process works.) The detectors rely on superconducting nanowires made of molybdenum silicide.** They can record more than 80 percent of arriving photons, revealing whether they are in the same or different time slots each just 1 nanosecond long. The experiments were performed at wavelengths commonly used in telecommunications.


Because the experiment filtered out and focused on a limited combination of quantum states, teleportation could be successful in only 25 percent of the transmissions at best. Thanks to the efficient detectors, researchers successfully teleported the desired quantum state in 83 percent of the maximum possible successful transmissions, on average. All experimental runs with different starting properties exceeded the mathematically significant 66.7 percent threshold for proving the quantum nature of the teleportation process.




Image Credit : NIST 

 

Thursday, September 24, 2015

Opportunity to Combine Quantum Control of Neutrons with The Study and Engineering of Quantum Materials

A twist for control of orbital angular momentum of neutron waves


Exciting opportunity to combine quantum control of neutrons with the study and engineering of quantum materials.

UNIVERSITY OF WATERLOO


24/09/2015


An experiment by a team of researchers led from the University of Waterloo's Institute for Quantum Computing (IQC) shows, for the first time, that a wave property of neutrons, Orbital Angular Momentum (OAM), can be controlled.

[caption id="attachment_666" align="aligncenter" width="500"]Opportunity to Combine Quantum Control of Neutrons with The Study and Engineering of Quantum Materials www.quantumcomputingtechnologyaustralia.com-105                                             The interferometer for testing orbital         angular momentum for neutrons[/caption]

This newfound control of neutron OAM states means that researchers can now use neutron OAM beams to see inside materials that optical, x-ray or electron OAM beams can't penetrate.

This control can help measure the magnetism, for example, in magnetic materials, as well as deeper probes of superconducting and chiral materials.

Neutrons are the probe of choice for many materials. Researchers use neutrons to learn more about material properties, such as crystalline structure or magnetic signature. Neutrons are massive, penetrating and neutral particles, and they also exhibit wavelike properties.

OAM is associated with the rotation of an object around a fixed axis. For example, the OAM of a planet around the sun is related to the distance of the planet to the sun and its speed. Control of OAM has already been shown using different methods for beams of optical light, x-rays and electrons.

It was at a talk about electron OAM where Research Assistant Professor Dmitry Pushin, a member of Waterloo's Department of Physics and Astronomy, and collaborator Charles Clark of the Joint Quantum Institute in Maryland conceived of the idea to control neutron OAM. Pushin then designed the experiment to prove it.

Pushin's experiment uses neutrons created by a nuclear reactor at the National Institute of Standards and Technology (NIST) and passes them through a Mach-Zehnder interferometer.

Although there is never more than one neutron in the interferometer at any given time, the neutron can be thought of as a pulse of waves. The neutron waves meet a blade of silicon and break into sub-beams. One of those beams then hits a spiral phase plate which impresses a twist on the neutron beam, giving a different OAM to the waves taking that path than the waves taking the other path. The twist quantizes, or entangles, the path.

The sub-beams then strike a second silicon blade that directs the two beams to the same spot on the third blade Before the two sub-beams merge and interfere with each other at the third blade, a phase flag fine-tunes the phase of the neutron sub-beams. Finally the interference pattern is recorded at the third blade in a two-dimensional detector to confirm that the extra OAM has been controllably imparted.

"Before, we could only study the spin, path and energy degrees of freedom of chiral materials," said Pushin, also a Program Researcher for the NSERC CREATE Program for Neutron Science and Engineering of Functional Materials. "In principle, we showed that we can change the OAM by any specified value. We can now study these materials with spiral structures such as DNA without being limited by the degrees of freedom for neutron-based studies."

"The new control over OAM states enables neutrons to now probe the helicity of materials including liquid crystals, helical magnetic ordering and topological materials," said David Cory, Canada Excellence Research Chair and faculty member with IQC and the Department of Chemistry. "A particularly exciting opportunity is to combine our quantum control of neutrons with the study and engineering of quantum materials."

###


The paper, Controlling Orbital Angular Momentum, a collaboration by Pushin, Cory and colleagues from Joint Quantum Institute, NIST and Boston University, was published in Natureon September 24.

News Release Source : A twist for control of orbital angular momentum of neutron waves

Image Credit : University of Waterloo

Wednesday, September 23, 2015

Quantum Computing Industry Needs More Australian Government Support

Quantum industry needs more Australian government support






[caption id="attachment_661" align="aligncenter" width="563"]Quantum Computing Industry Needs More Australian Government Support www.quantumcomputingtechnologyaustralia.com-104 Quantum Computing Industry Needs More Australian Government Support[/caption]

Australia may be poised to win the international race to build a quantum computer, but without investment to scale-up and industrialise the technology, the long-term benefits could be lost offshore, says UNSW Scientia Professor Michelle Simmons.

Two weeks after winning the CSIRO Eureka Prize for Leadership in Science, Simmons is again in the spotlight, delivering a guest lecture at the Chief Executive Women’s 2015 annual dinner in Sydney.

As the Director of the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, Simmons has been instrumental in positioning Australia as the front-runner in the global race to build a quantum computer based in silicon.

Addressing more than 900 of the nation’s top female leaders from the public and private sectors, Simmons spoke about her passion for physics and the importance of science education in high schools.

She also warned that Australia is at risk of missing out on the long-term benefits of the world-leading research conducted in her Centre.

  • “We are at risk of all the technology we have developed, and the trained human capital, being transferred overseas with little long-term benefit to Australia. The significance of this work to Australia should not be underestimated.”


“Australia has established a unique approach [to developing a quantum computer] with a competitive edge that has been described by our US funding agencies as having a two to three year lead over the rest of the world,” says Simmons.

Despite leading the world, she says “there is no mechanism in Australia to scale-up what we have achieved and to translate it industrially".

“We are at risk of all the technology we have developed, and the trained human capital, being transferred overseas with little long-term benefit to Australia.

“The significance of this work to Australia should not be underestimated.”

Exponential increase


Quantum computers are predicted to provide an extraordinary speed-up in computational power. For each quantum bit added to a circuit, the processing power doubles.

Instead of performing calculations one after the other like a conventional computer, these futuristic machines – which exploit the unusual quantum properties of single atoms, the fundamental constituents of all matter – work in parallel, calculating all possible outcomes at the same time.

They will be ideal for encrypting information and searching huge databases much faster than conventional computers, and for performing tasks beyond the capability of even the most powerful supercomputers, such as modelling complex biological molecules for drug development.

“It is predicted that 40% of all Australian industry will be impacted if we realise this technology.”

Simmons says an Australian-made prototype system using technologies patented by her team, where all functional components are manufactured and controlled on the atomic-scale, could be ready within five years.

The Commonwealth Bank of Australia recently invested $5 million into the project and Simmons says she is “negotiating contracts with several other computing, communications and aerospace industries both here and abroad”.

But the rest of the world is making giant strides, and putting up big money: the UK government recently put forward £270 million and the Dutch government €300 million to support quantum information research.

“Australia is a fantastic place to innovate,” says Simmons. “We attract the best young people from across the world and we undertake leading international science.

“Our challenge going forward is how to create the environment, opportunities and industries to keep them here.”

Choosing Australia


Simmons can speak from first-hand experience. She came to Australia back in 1999 for two reasons: the first, she says, “was academic freedom to pursue something ambitious and high risk", and the second "was Australia’s ‘can do’ attitude”.

In the mid-1990s, Simmons was working as an experimental quantum physicist at the University of Cambridge. She had mastered how to design, fabricate and measure electrical devices, which displayed strong quantum effects, and was looking for a new challenge: “to leapfrog the global IT industry and create devices at the atomic scale.”

When she was awarded an Australian Fellowship to come to UNSW, she withdrew applications for a fellowship to remain at Cambridge, and another for a faculty position at Stanford University in the US.

“The UK offered years surrounded by pessimistic academics, who would tell you a thousand reasons why your ideas would not work,” she says. “The US offered a highly competitive environment where you would have to fight both externally and internally for funds.

“Australia offered independent fellowships, ability to work on large projects with other academics and the ‘can do’ attitude to give it a go.”

Once in Australia, she set up a team that is still “unique internationally”.

“Our goal was to adapt the scanning tunnelling microscope (STM) developed by IBM not just to image atoms, but to manipulate them and to make a functional electronic device where the active component is a single atom.”

Critics, including senior scientists at IBM, believed there were at least eight insurmountable technical challenges.

“The consensus view within the scientific community was that the chances … were near impossible,” she says.

Simmons also had to combine two technologies in a way that had never been done before – the STM, which provides the ability to image and manipulate single atoms, and something known as molecular beam epitaxy, which provides the ability to grow a layer of material atom by atom.

“When I told the two independent system manufacturers in Germany about the idea, they said they would make a system to my design, but that there would be no guarantee that it would work. It was a $3.5 million risk.

“To my delight it worked a factor of six better than I had hoped. And over the past decade we have systematically solved all those eight challenges that were predicted to block our way.”

Her team has since developed the world’s first single atom transistor, as well as the narrowest conducting wires in silicon.

Finding physics


Simmons’ foray into physics began, in part, thanks to a chess match.

Simmons used to watch her father and brother playing intense games in her family’s living room in south-east London in the 1970s.

One day, the eight-year-old observer asked to play, eliciting a “somewhat dismissive and terse” response from her father, she recalls.

“A girl! Wanting to play chess. Well, he indulged me and did something that I believe changed the course of my life,” she says.

A surprise victory over her father, and several more over the coming months, saw Simmons take-up competitive chess at her father’s behest, ultimately becoming the London girls chess champion at 11.

Ultimately, it wasn’t her calling, but chess, she says, taught her to challenge herself and other people’s expectations, and to pursue something she truly loved.

That love ended up being physics: “I decided to pick the hardest thing that I could find that I enjoyed. Something that I could imagine I would always look forward to; would have to struggle to understand and would feel euphoric about when I had mastered it.”

She also credits an excellent physics teacher who challenged and encouraged her – and even lined up a phone conversation with a US astronaut, after he learned this was Simmons’ dream profession.

“The significance of having a passionate teacher, well versed in the subject they teach, cannot be underestimated,” she says. “Great teachers with high expectations challenge their students to be the best they can be.”

Simmons has exemplified that belief. She was named NSW Scientist of the Year in 2012, was awarded an ARC Laureate Fellowship in 2013, and in 2014 joined the likes of Stephen Hawking and Albert Einstein as an elected member of the American Academy of Arts and Science.

“For me, the next challenge is not just one of quantum physics, but of also finding a way to work with Australian government, and industries both here and abroad, to establish a high-tech quantum industry in Australia,” she says.

“To back its brightest and best and to ensure that Australian innovation stays here in Australia.

“It’s a challenge that I am up for. I fundamentally believe it is the right thing to do and now is the right time to do it.”

News Release Source :  Quantum industry needs more Australian government support

Image Credit : UNSW

Tuesday, September 8, 2015

New Type of Light Source That Emits Single Photons

Researchers in Basel Develop Ideal Single-Photon Source


With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons from a semiconductor. They have reported their findings in the scientific journal Nature Communications together with colleagues from the University of Bochum.

[caption id="attachment_649" align="alignleft" width="305"]New Type of Light Source That Emits Single Photons www.quantumcomputingtechnologyaustralia.com-103 Semiconductor quantum dot emitting a stream of identical photons.[/caption]

A single-photon source never emits two or more photons at the same time. Single photons are important in the field of quantum information technology where, for example, they are used in quantum computers. Alongside the brightness and robustness of the light source, the indistinguishability of the photons is especially crucial. In particular, this means that all photons must be precisely the same color. Creating such a source of identical single photons has proven very difficult in the past.

However, quantum dots made of semiconductor materials are offering new hope. A quantum dot consists of a few hundred thousand atoms and forms by self-assembly under certain conditions in a semiconductor. Single electrons can be trapped inside a quantum dot and are confined on a nanometer scale. An individual photon is emitted when a quantum state decays.


Noise in the semiconductor

A team of scientists led by Dr. Andreas Kuhlmann and Prof. Richard J. Warburton from the University of Basel have already shown in past publications that the indistinguishability of the photons is reduced by the fluctuating nuclear spins of the quantum dot atoms. For the first time ever, the scientists have managed to control the nuclear spins to such an extent that even photons sent out widely separated in time are the same color.




Quantum cryptography and quantum communication are two potential areas of application for single-photon sources. These technologies could make it possible to perform calculations that are far beyond the capabilities of today's computers.

The study was supported by the QSIT - Quantum Science and Technology National Center of Competence in Research, of which the University of Basel is the co-leading house.

News Release Source : Researchers in Basel Develop Ideal Single-Photon Source

Image Credit :  University of Basel

Electron Exchange in Quantum Dots Improved Stability of Electron Spins in Qubits

Improved Stability of Electron Spins in Qubits


Calculation with electron spins in a quantum computer assumes that the spin states last for a sufficient period of time. Physicists at the University of Basel and the Swiss Nanoscience Institute have now demonstrated that electron exchange in quantum dots fundamentally limits the stability of this information. Control of this exchange process paves the way for further progress in the coherence of the fragile quantum states. The report from the Basel-based researchers appears in the scientific journal Physical Review Letters.


[caption id="attachment_646" align="aligncenter" width="650"]Electron Exchange in Quantum Dots Improved Stability of Electron Spins in Qubitswww.quantumcomputingtechnologyaustralia.com-102              Double quantum dot: The three lower and upper contacts trap up to two            individual electrons, the spin states of which form the quantum-mechanical information unit. The lateral contacts act as sensors.[/caption]

The basic idea of a quantum computer is to replace the ones and zeros used in today’s bits with quantum states, or qubits. Qubits are units of information that not only assume the values zero and one, but in which zero and one are possible at the same time, and in any chosen combination, in the form of a quantum superposition. Qubits can, for example, be implemented using the spins of individual electrons held in nanoscale structures made of semiconducting material, known as quantum dots. By exploiting quantum-mechanical principles such as superposition, a quantum computer can achieve enormous processing speeds – but only if the electron spins persist for long enough.

In recent years, it has been possible to extend this so-called coherence time to over a millisecond, thanks to the successful reduction of interference caused by nuclear spins. Thus, the search for other factors that affect the stability of the electron spins increased in importance.

Discovery of electron exchange

Physicists at the University of Basel and the Swiss Nanoscience Institute have now established that qubits’ coherence is limited by a process in which individual electrons are exchanged between a quantum dot and an external reservoir. The reservoir represents a type of electrode that is in contact with the quantum dot and is required for the measurements.

The researchers, led by Professor Dominik Zumbühl, observed that thermal excitation prompts an electron to jump from the quantum dot into the reservoir, and that shortly thereafter an electron jumps from the reservoir into the quantum dot.

This exchange creates a short-lived charge state, which the researchers in Basel have now been able to demonstrate for the first time with a charge sensor. The exchange process also leads to a randomizing of the electron spins, through which quantum information is lost.

Fundamental process for coherence

Based on the experimental observations, the researchers were able to significantly extend the existing theoretical description of double quantum dots, which can contain two electrons. They also succeeded in influencing the intensity of the temperature-dependent exchange process by cooling the electrons down to 60 millikelvins. At the same time, the process was slowed and the stability of the spins prolonged by changing the voltages at the entrances, or gates, to the quantum dot.

An understanding and control of this exchange process, which is fundamental to quantum dots, paves the way for further progress in qubit coherence. At the same time, it opens the way to a quick generation of desired spin states in quantum dots.

Implementation of a theoretical concept with Basel roots

This approach, whereby quantum dots in semiconductors are exploited in order to use the spin of an individual electron as a qubit, can be traced back to Prof. Daniel Loss of the University of Basel and the American physicist David DiVincenzo. Their concept, which they originally presented in 1998, has the potential to allow the creation of quantum computers with a large number of connected spin qubits. The current study was carried out in collaboration with researchers from the University of St Andrews (GB) and the University of California, Santa Barbara (US).

News Release Source : Improved Stability of Electron Spins in Qubits

Image Credit : University of Basel

 

Saturday, September 5, 2015

Intel Investing $50 Million in Quantum Computing

Intel Invests US$50 Million to Advance Quantum Computing



  • Intel will invest US$50 million with QuTech, the quantum research institute of Delft University of Technology (TU Delft) and TNO, and will dedicate engineering resources to advance research efforts.

  • The collaboration over the next 10 years will accelerate quantum computing research, which holds the promise of solving complex problems that are practically insurmountable today.


INTEL

DELFT, Netherlands, Sept. 3, 2015

Today Intel Corporation announced a 10-year collaborative relationship with the Delft University of Technology and TNO, the Dutch Organisation for Applied Research, to accelerate advancements in quantum computing. To achieve this goal, Intel will invest US$50 million and will provide significant engineering resources both on-site and at Intel, as well as technical support.

[caption id="attachment_642" align="aligncenter" width="695"]Intel Investing $50 Million in Quantum Computing  www.quantumcomputingtechnologyaustralia.com-101                                                          Intel Investing $50 Million in Quantum Computing[/caption]

Quantum computing holds the promise of solving complex problems that are practically insurmountable today, including intricate simulations such as large-scale financial analysis and more effective drug development. Quantum computing is an area of research that Intel has been exploring because it has the potential to augment the capabilities of tomorrow's high performance computers.

"A fully functioning quantum computer is at least a dozen years away, but the practical and theoretical research efforts we're announcing today mark an important milestone in the journey to bring it closer to reality," said Mike Mayberry, Intel vice president and managing director of Intel Labs.

Intel's goal is to extend the university's physics expertise and diverse quantum computing research efforts by contributing advanced manufacturing, electronics and architectural expertise.

It believes no one company or organization will succeed alone in unlocking the path to advanced quantum computing. Instead, partnerships – such as this one between Intel and the QuTech institute in Delft – and industry collaboration will help realize the promise of such a technically complex issue.

"Expertise in specialized electronics combined with advanced physics is required to move quantum computing closer to being a reality," said Mayberry. "While qubit development has been the focus of quantum computing research to date, low-temperature electronics will be required to connect, control and measure multiple qubits, and this is where we can contribute. Our collaboration with QuTech will explore quantum computing breakthroughs that could influence the industry overall."

"In the next five to 10 years, progress in quantum computing will increasingly require the combination of excellent science with high-level engineering," said lead scientist Lieven Vandersypen from QuTech. "For the realization of complex circuits containing large numbers of quantum bits, the know-how from the semiconductor industry is essential, and QuTech is thrilled to partner with the leading semiconductor company in the world."

Intel CEO Brian Krzanich published a blog today explaining the company's strategic interest in quantum computing, and the relevance of electronics and manufacturing expertise in making quantum computing a reality.

What is Quantum Computing?
Quantum computers use quantum bits (qubits), unlike digital computers, which are based on transistors and require data to be encoded into binary digits (bits). These qubits can exist in multiple states simultaneously, offering the potential to compute a large number of calculations in parallel, speeding time to resolution.

News Related Link : Promise of Quantum Computing

News Release Source : Intel Invests US$50 Million to Advance Quantum Computing

Image Credit : Intel

Sunday, August 30, 2015

Professor Michelle Simmons : Leading Australia’s Quantum Future

2015 CSIRO Eureka Prize for Leadership in Science




Professor Michelle Simmons is Director of the ARC Centre of Excellence for Quantum Computation and Communication Technology Centre, based at the University of New South Wales awarded 2015 CSIRO Eureka Prize for Leadership in Science for Leading Australia’s quantum future.

[caption id="attachment_633" align="aligncenter" width="600"]Professor Michelle Simmons : Leading Australia’s Quantum Future www.quantumcomputingtechnologyaustralia.com-100           Professor Michelle Simmons : Leading Australia’s Quantum Future[/caption]
 Leading Australia’s quantum future


Australia’s position at the forefront of the developing field of quantum computing is at least partly due to the leadership shown by Professor Michelle Simmons.
Professor Simmons is Director of the ARC Centre of Excellence for Quantum Computation and Communication Technology Centre, based at the University of New South Wales.

Under her leadership, the team has:

  • Developed the world’s smallest transistor, built of one single atom.

  • Built the world’s smallest silicon wires, a thousand times narrower than a human hair.

  • Independently controlled quantum components only a few millionths of a millimetre apart.


For her leadership, passion, commitment and energy devoted to advancing the field of quantum computing in Australia, Professor Simmons has been awarded the CSIRO Eureka Prize for Leadership in Science.

“The 180 researchers of the Quantum Computation and Communication Technology Centre, which Professor Simmons established and leads, are ensuring Australia’s success in what will become a multi-billion dollar industry,” Kim McKay AO, Executive Director and CEO of the Australian Museum said. “Their success is a tribute to Professor Simmons’ demonstrated passion, commitment and energy,” she said.

Professor Simmons achievements are legendary in the Australian science community. She is:

  • One of the youngest and one of the first female physicists elected as a Fellow of the Australian Academy of Science (2006).

  • An Australian Research Council Laureate Fellow (2013).

  • One of very few researchers to have won two Australian Research Council Federation Fellowships (2003 and 2008).

  • A Foreign Honorary Member of the American Academy of Arts and Sciences (2014).


Established in 1827, the Australian Museum is the nation’s first museum and one of its foremost scientific research, educational and cultural institutions. The Australian Museum Eureka Prizes are the most comprehensive national science awards, honouring excellence in Research and Innovation, Leadership, Science Communication and Journalism, and School Science.

The other finalists were:

  • Professor Snow Barlow (University of Melbourne) for policy and research leadership in the field of climate change.

  • Rosie Hicks (Australian National Fabrication Facility), for leading national collaboration in Australia’s scientific infrastructure.


For more information about all the winners

News Source Release : 2015 CSIRO Eureka Prize for Leadership in Science

Image Credit : www.science.unsw.edu.au

Thursday, August 20, 2015

The General Availability of the 1000+ Qubit D-Wave 2X Quantum Computer





New system has twice the qubits of the D-Wave Two and new benchmarks demonstrate increasing performance advantage over specialized highly tuned algorithms on classical systems

Palo Alto, CA
August 20, 2015

D-Wave Systems Inc., the world's first quantum computing company, today announced the general availability of the D-Wave 2X™ quantum computing system. The D-Wave 2X features a 1000+ qubit quantum processor and numerous design improvements that result in larger problem sizes, faster performance and higher precision. At 1000+ qubits, the D-Wave 2X quantum processor evaluates all 21000 possible solutions simultaneously as it converges on optimal or near optimal solutions, more possibilities than there are particles in the observable universe. No conventional computer of any kind could represent this many possibilities simultaneously, further illustrating the powerful nature of quantum computation.

[caption id="attachment_625" align="aligncenter" width="480"]The General Availability of the 1000+ Qubit D-Wave 2X Quantum Computer www.quantumcomputingtechnologyaustralia.com-099                      The General Availability of the 1000+ Qubit                                                            D-Wave 2X Quantum Computer[/caption]

The D-Wave 2X demonstrates a factor of up to 15x gains over highly specialized classical solvers in nearly all classes of problems examined. Measuring only the native computation time of the D-Wave 2X quantum processor shows performance advantages of up to 600x over these same solvers.

Jeremy Hilton, vice president of processor development at D-Wave, said, “The D-Wave 2X marks the latest step forward in our aggressive performance trajectory. Our first system, the D-Wave One™ system, was the first scalable quantum computer, but was slower than general-purpose optimization software. The next generation D-Wave Two™ system significantly outperformed the general-purpose optimization software, but was only comparable to specialized highly tuned heuristic algorithms. With the D-Wave 2X system we have surpassed the performance of these specialized algorithms, providing incentive for users to develop methods to harness this revolutionary technology for their own applications.”

To showcase the performance of the new system, a paper outlining benchmark results for a set of problems native to the D-Wave 2X system will be posted to the arXiv. A summary of the results and a link to the paper are on the company’s blog.

The benchmark includes a set of synthetic discrete combinatorial optimization problems intended to be representative of real world challenges.  Some application challenges currently under study at D-Wave involve algorithms that tune stock portfolios or underlie machine learning used in bioinformatics, inductive logic programming, and natural language processing and computer vision.

“D-Wave continues to advance the state-of-the-art of quantum computing at a rapid pace, with a number of impressive application results, and the release of their 1000 qubit D-Wave 2X system is another major milestone in the industry,” said Earl Joseph, IDC program vice president for HPC. “Complementing today’s high performance computing systems, quantum computers will likely become an important tool to solve important problems that can’t be solved today.”

In addition to scaling beyond 1000 qubits, the new system incorporates other major technological and scientific advancements. These include an operating temperature below 15 millikelvin, near absolute zero and 180 times colder than interstellar space. With over 128,000 Josephson tunnel junctions, the new processors are believed to be the most complex superconductor integrated circuits ever successfully used in production systems. Increased control circuitry precision and a 50% reduction in noise also contribute to faster performance and enhanced reliability.

The D-Wave 2X system is available immediately for shipment and installation.

About D-Wave Systems Inc.
D-Wave Systems is the first quantum computing company. Its mission is to integrate new discoveries in physics, engineering, manufacturing, and computer science into breakthrough approaches to computation to help solve some of the world’s most complex challenges. The company's quantum computers are built using a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation. D-Wave’s customers include some of the world’s most prominent organizations including Lockheed Martin, Google and NASA. With headquarters near Vancouver, Canada, D-Wave U.S. is based in Palo Alto, California. D-Wave has a blue-chip investor base including Bezos Expeditions, BDC Capital, DFJ, Goldman Sachs, Growthworks, Harris & Harris Group, In-Q-Tel, International Investment and Underwriting, and Kensington Partners Limited. For more information, visit: www.dwavesys.com.

News Release Source : D-Wave Systems Announces the General Availability of the 1000+ Qubit D-Wave 2X Quantum Computer

Image Credit : D-Wave Systems