Saturday, September 20, 2014

Fluid Mechanics Shows Alternative View of Quantum Mechanics

Fluid mechanics suggests alternative to quantum orthodoxy


The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum has been what's called the "Copenhagen interpretation" — which holds that, in some sense, a single particle really is a wave, smeared out across the universe, that collapses into a determinate location only when observed.

[caption id="attachment_432" align="aligncenter" width="500"]Fluid Mechanics Shows Alternative View of Quantum Mechanics www.quantumcomputingtechnologyaustralia.com-063 Fluid Mechanics Shows Alternative View of Quantum Mechanics[/caption]

But some founders of quantum physics — notably Louis de Broglie — championed an alternative interpretation, known as "pilot-wave theory," which posits that quantum particles are borne along on some type of wave. According to pilot-wave theory, the particles have definite trajectories, but because of the pilot wave's influence, they still exhibit wavelike statistics.

John Bush, a professor of applied mathematics at MIT, believes that pilot-wave theory deserves a second look. That's because Yves Couder, Emmanuel Fort, and colleagues at the University of Paris Diderot have recently discovered a macroscopic pilot-wave system whose statistical behavior, in certain circumstances, recalls that of quantum systems.

Couder and Fort's system consists of a bath of fluid vibrating at a rate just below the threshold at which waves would start to form on its surface. A droplet of the same fluid is released above the bath; where it strikes the surface, it causes waves to radiate outward. The droplet then begins moving across the bath, propelled by the very waves it creates.

"This system is undoubtedly quantitatively different from quantum mechanics," Bush says. "It's also qualitatively different: There are some features of quantum mechanics that we can't capture, some features of this system that we know aren't present in quantum mechanics. But are they philosophically distinct?"

Tracking trajectories

Bush believes that the Copenhagen interpretation sidesteps the technical challenge of calculating particles' trajectories by denying that they exist. "The key question is whether a real quantum dynamics, of the general form suggested by de Broglie and the walking drops, might underlie quantum statistics," he says. "While undoubtedly complex, it would replace the philosophical vagaries of quantum mechanics with a concrete dynamical theory."

Last year, Bush and one of his students — Jan Molacek, now at the Max Planck Institute for Dynamics and Self-Organization — did for their system what the quantum pioneers couldn't do for theirs: They derived an equation relating the dynamics of the pilot waves to the particles' trajectories.

In their work, Bush and Molacek had two advantages over the quantum pioneers, Bush says. First, in the fluidic system, both the bouncing droplet and its guiding wave are plainly visible. If the droplet passes through a slit in a barrier — as it does in the re-creation of a canonical quantum experiment — the researchers can accurately determine its location. The only way to perform a measurement on an atomic-scale particle is to strike it with another particle, which changes its velocity.

The second advantage is the relatively recent development of chaos theory. Pioneered by MIT's Edward Lorenz in the 1960s, chaos theory holds that many macroscopic physical systems are so sensitive to initial conditions that, even though they can be described by a deterministic theory, they evolve in unpredictable ways. A weather-system model, for instance, might yield entirely different results if the wind speed at a particular location at a particular time is 10.01 mph or 10.02 mph.

The fluidic pilot-wave system is also chaotic. It's impossible to measure a bouncing droplet's position accurately enough to predict its trajectory very far into the future. But in a recent series of papers, Bush, MIT professor of applied mathematics Ruben Rosales, and graduate students Anand Oza and Dan Harris applied their pilot-wave theory to show how chaotic pilot-wave dynamics leads to the quantumlike statistics observed in their experiments.

What's real?

In a review article appearing in the Annual Review of Fluid Mechanics, Bush explores the connection between Couder's fluidic system and the quantum pilot-wave theories proposed by de Broglie and others.

The Copenhagen interpretation is essentially the assertion that in the quantum realm, there is no description deeper than the statistical one. When a measurement is made on a quantum particle, and the wave form collapses, the determinate state that the particle assumes is totally random. According to the Copenhagen interpretation, the statistics don't just describe the reality; they are the reality.

But despite the ascendancy of the Copenhagen interpretation, the intuition that physical objects, no matter how small, can be in only one location at a time has been difficult for physicists to shake. Albert Einstein, who famously doubted that God plays dice with the universe, worked for a time on what he called a "ghost wave" theory of quantum mechanics, thought to be an elaboration of de Broglie's theory. In his 1976 Nobel Prize lecture, Murray Gell-Mann declared that Niels Bohr, the chief exponent of the Copenhagen interpretation, "brainwashed an entire generation of physicists into believing that the problem had been solved." John Bell, the Irish physicist whose famous theorem is often mistakenly taken to repudiate all "hidden-variable" accounts of quantum mechanics, was, in fact, himself a proponent of pilot-wave theory. "It is a great mystery to me that it was so soundly ignored," he said.

Then there's David Griffiths, a physicist whose "Introduction to Quantum Mechanics" is standard in the field. In that book's afterword, Griffiths says that the Copenhagen interpretation "has stood the test of time and emerged unscathed from every experimental challenge." Nonetheless, he concludes, "It is entirely possible that future generations will look back, from the vantage point of a more sophisticated theory, and wonder how we could have been so gullible."
###

Friday, September 19, 2014

Quantum Transformations Found Near Absolute Zero

Elusive quantum transformations found near absolute zero


 
Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition

UPTON, NY—Heat drives classical phase transitions—think solid, liquid, and gas—but much stranger things can happen when the temperature drops. If phase transitions occur at the coldest temperatures imaginable, where quantum mechanics reigns, subtle fluctuations can dramatically transform a material.

[caption id="attachment_424" align="aligncenter" width="400"]Quantum Transformations Found Near Absolute Zero www.quantumcomputingtechnologyaustralia.com-062 Quantum Transformations Found Near Absolute Zero[/caption]

Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Stony Brook University have explored this frigid landscape of absolute zero to isolate and probe these quantum phase transitions with unprecedented precision.

"Under these cold conditions, the electronic, magnetic, and thermodynamic performance of metallic materials is defined by these elusive quantum fluctuations," said study coauthor Meigan Aronson, a physicist at Brookhaven Lab and professor at Stony Brook. "For the first time, we have a picture of one of the most fundamental electron states without ambient heat obscuring or complicating those properties."

The scientists explored the onset of ferromagnetism—the same magnetic polarization exploited in advanced electronic devices, electrical motors, and even refrigerator magnets—in a custom-synthesized iron compound as it approached absolute zero.

The research provides new methods to identify and understand novel materials with powerful and unexpected properties, including superconductivity—the ability to conduct electricity with perfect efficiency. The study will be published online Sept. 15, 2014, in the journal Proceedings of the National Academy of Sciences.

"Exposing this quantum phase transition allows us to predict and potentially boost the performance of new materials in practical ways that were previously only theoretical," said study coauthor and Brookhaven Lab physicist Alexei Tsvelik.

Mapping Quantum Landscapes

The presence of heat complicates or overpowers the so-called quantum critical fluctuations, so the scientists conducted experiments at the lowest possible temperatures.

"The laws of thermodynamics make absolute zero unreachable, but the quantum phase transitions can actually be observed at nonzero temperatures," Aronson said. "Even so, in order to deduce the full quantum mechanical nature, we needed to reach temperatures as low as 0.06 Kelvin—much, much colder than liquid helium or even interstellar space."

The researchers used a novel compound of yttrium, iron, and aluminum (YFe2Al10), which they discovered while searching for new superconductors. This layered, metallic material sits poised on the threshold of ferromagnetic order, a key and very rare property.

"Our thermodynamic and magnetic measurements proved that YFe2Al10 becomes ferromagnetic exactly at absolute zero—a sharp contrast to iron, which is ferromagnetic well above room temperature," Aronson said. "Further, we used magnetic fields to reverse this ferromagnetic order, proving that quantum fluctuations were responsible."

The collaboration produced near-perfect samples to prove that material defects could not impact the results. They were also the first group to prepare YFe2Al10 in single-crystal form, which allowed them to show that the emergent magnetism resided within two-dimensional layers.

"As the ferromagnetism decayed with heat or applied magnetic fields, we used theory to identify the spatial and temporal fluctuations that drove the transition," Tsvelik said. "That fundamental information provides insight into countless other materials."

Quantum Clues to New Materials

The scientists plan to modify the composition of YFe2Al10 so that it becomes ferromagnetic at nonzero temperatures, opening another window onto the relationship between temperature, quantum transitions, and material performance.

"Robust magnetic ordering generally blocks superconductivity, but suppressing this state might achieve the exact balance of quantum fluctuations needed to realize unconventional superconductivity," Tsvelik said. "It is a matter of great experimental and theoretical interest to isolate these competing quantum interactions that favor magnetism in one case and superconductivity on the other."

Added Aronson, "Having more examples displaying this zero-temperature interplay of superconductivity and magnetism is crucial as we develop a holistic understanding of how these phenomena are related and how we might ultimately control these properties in new generations of materials."
###

Other authors on this study include Liusuo Wu, Moosung Kim, and Keeseong Park, all of Stony Brook University's Department of Physics and Astronomy.

The research was conducted at Brookhaven Lab's Condensed Matter Physics and Materials Science Department and supported by the U.S. Department of Energy's Office of Science (BES).

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

News Release Source : Elusive quantum transformations found near absolute zero